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The motion of a particle in an aging medium can be described by the generalized Langevin equation, in the
limit of long waiting time tw where the medium is in a quasistationary regime at the scale of the observation
times investigatedst! twd. In this framework, we analyze the link between the Brownian motion and the
effective temperature which characterizes the out-of-equilibrium properties of the medium. This effective
temperature involves a frequency-dependent effective temperatureTeffsvd formally identical to a generalized
susceptibility. The analytical results are reported in the case whenTeffsvd is mapped to the universal non-
Debye power-law ac response met for instance in dielectrics. In the particular case where the viscous friction
coefficient is a power lawgsvd~ uvud−1, contact is made with the heuristic expressionTeff=Tf1+sv /v0dag,
postulated in prior experimental and theoretical works. A closed analytic form of the time correlation function
of the medium coordinatesthe noise forced CFFst− t8d=kFstdFst8dl is obtained, in the subdiffusive regimesd
,1d whereCFFst− t8d is a regular function. This time correlation is long range. We also determine another
effective temperatureTeff8 st− t8d of the medium, usually defined in aging systems as the temperature associated
with the violation of the fluctuation-dissipation theorem in its time formulation. This temperature takes the
form Teff8 st− t8d=Tf1+sut− t8u / t0d−ag.T. The results are discussed and compared with experiments.
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I. INTRODUCTION

Statistical properties of out-of-equilibrium systems are
characterized by the violation of equilibrium theorems such
as the fluctuation-dissipation theoremsFDTd. Since the rela-
tion between the autocorrelationCst ,t8d and the susceptibil-
ity xst ,t8d of any variable at equilibrium in the classical limit
of the FDT is linear in temperature, the violation factor of the
FDT for an aging variable is commonly used to define an
effective temperatureTeff8 by the relationf1g

ust − t8d
]Cst,t8d

]t8
= kBTeff8 st,t8dxst,t8d. s1.1d

The Brownian motion of a free particle is a simple example
of an aging systemf2g. This motion is described by a gener-
alized Langevin equationf3,4g, in which the effect of the
environmentsthe thermal bathd is encoded in a friction term
and a noise term. Under the effect of the diffusion of the
particle, its displacement is an aging variable, and a quanti-
tative study of the related effective temperature has been
achieved when the bath is at equilibriumf2,5g.

The case when the bath is itself out of equilibrium is
much more intricate. This situation is met in experiments
where the Brownian diffusing particle is a tracer, the motion
of which is used as a probe to investigate the out-of-
equilibrium properties of the aging bath in which it is im-
mersed. One difficulty comes from the experiments them-
selves. While the formalism of aging phenomena is best done
in real time-space, the use of optical spectroscopy to inves-
tigate out-of-equilibrium experimental properties makes de-

sirable a different theoretical approach of aging in the Fou-
rier space of frequenciesv. Hohenberg and Shraimanf6g
have defined an effective temperatureTeffsvd for stationary
nonequilibrium systems through the relation between fluc-
tuation and dissipation in the Fourier space:

vCsvd = 2kBTeffsvdIm xsvd. s1.2d

At equilibrium, Teff8 st ,t8d=Teffsvd=T, and Eqs.s1.1d and
s1.2d reduce to the FDT expressed in real and Fourier space,
respectively. Note Eq.s1.1d depends on two timest ,t8, while
Eq. s1.2d depends on one frequency only, because of the
stationary process corresponding to the case when all quan-
tities in Eq.s1.1d depend ont− t8 only. We only consider this
case in the present work. In practice, this situation can be
met in aging sustems, when “observed” at a time scalev−1

short with respect to the waiting timetw. In this case, the
susceptibility, the correlation function, and the effective tem-
perature defined from Eq.s1.2d are parametrized by the wait-
ing time or agetw f7,8g. The fluctuation and dissipation of
the medium are studied at given agetw, as a function ofv, in
a frequency range that satisfiesv−1! tw.

Note that aging is usually defined as the lack of invariance
by time translation in the infinite time limit. Aging itself is
actually beyond the scope of this study, since the use of Eq.
s1.2d requires stationary dynamics. Nevertheless, the term
aging medium is used, because the observation of stationary
out-of-equilibrium dynamics on a large time scale requires
systems with slow dynamics, a feature of aging systems.

Recently, several experimental determinations of effective
temperature in the Fourier space have been achieved in vari-
ous aging systemsf9–12g. In a first attempt to address this
problem, the generalized Langevin equation has been used to
determine the motion of the diffusing particle embedded in*Email address: mauger@ccr.jussieu.fr
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the aging systemf13g. It has been argued in this work that
the asymptotic Fourier analysisscorresponding to the long-
time limitd can be used to characterize the aging medium,
from the measurement of the mobility and the displacement
autocorrelation function of the Brownian particle. However,
equivalent expressions of the FDT lead to nonequivalent ef-
fective temperatures when the FDT is violatedf13,14g. The
first purpose of this papers is to investigate the self-
consistency of this approach, and analyze the link with ex-
perimental studies of the Brownian motion.

In case Eq.s1.2d cannot be usedstime invariance brokend,
the study of the dynamics in the real time-space from Eq.
s1.1d is unavoidable. We then found it also desirable to study
Teff8 st ,t8d for the aging medium in our model although we
only consider the stationary case: this is the only temperature
that can be investigated in the range of observation and wait-
ing times where a frequency-dependent effective temperature
is not defined. It is the second purpose of the present work to
report this study.

The paper is organized as follows. We briefly recall the
Langevin equation used to describe the diffusion of the
Brownian particlesSec. IId. We recall in Sec. III the formu-
lations of the fluctuation-dissipation theorems which apply to
both the velocity of the Brownian particlesfirst FDTd and the
random force of the thermal bathssecond FDTd, provided the
bath is at equilibrium. When the bath is not at equilibrium,
its aging can be characterized by an effective temperature in
the frequency space, which has the analytic properties of a
generalized susceptibility, so that universal laws of response
functions can be used to model it. We envision in Sec. IV the
case of the universal power-law ac response applying to a
wide class of problems and materials, including dielectrics
and ferroelectrics, in a broad range of frequencies. To make
contact with prior works, we consider the case when the time
or frequency dependence of the friction reduces to a power
law. The link with recent experimentsf12g is then discussed.
We analyze in Sec. V the correlation function of the aging
variable of the medium under study, namely, the friction
noise. We derive the corresponding effective time-dependent
temperatureTeff8 which describes the aging of the system un-
der study, as defined from the violation of the real time for-
mulation of the second FDT. We find that it satisfies the
criterionTeff8 std.T for any observation timet, as is required
for this parameter to have the meaning of an effective tem-
peraturef1,7,8g.

II. DIFFUSION IN A STATIONARY MEDIUM

The motion of a diffusing particle of massm evolving in
a stationary medium is usually described by the generalized
Langevin equationf3,4g

m
dv
dt

= − mE
−`

`

g̃st − t8dvst8ddt8 + Fstd, v =
dx

dt
, s2.1d

in which Fstd is the Langevin random force acting on the
particle andg̃std=gstdustd is a retarded friction kernel. The
Fourier transform of Eq.s2.1d is

vsvd = msvdFsvd, msvd =
1

mfgsvd − ivg
, s2.2d

which defines the frequency-dependent mobilitym of the
particle. BothFstd and the solutionvstd of the generalized
Langevin equations2.1d can then be viewed as stationary
random processes with spectral densities linked by

Cvvsvd = umsvdu2CFFsvd. s2.3d

In Eq. s2.2d the friction coefficientgsvd is the Fourier trans-
form of the retarded kernelg̃std, as defined bygsvd
=e−`

` g̃stdeivtdt.

III. CASE OF A BATH AT EQUILIBRIUM:
FLUCTUATION-DISSIPATION THEOREMS

We start from a prior workf13g, and use the same nota-
tions. In particular, the expressions of the first FDT which
applies to the velocity of the Brownian particle and the sec-
ond FDT relative to the bath have already been derived in
f13g, and we just recall here the resultsfEqs.s2.9d–s2.14d in
Ref. 13g. For the first FDT,

E
0

`

kvstdvs0dleivtdt

= kTmsvd

= −
v2

2
E

0

`

kfxstd − xs0dg2leivtdt, s3.1d

Cvvsvd =E
−`

`

kvstdvs0dleivtdt = kT2 Remsvd. s3.2d

We have added in Eq.s3.1d the expression of the mobility in
terms of the mean square displacementDx2std=kfxstd
−xs0dg2l displayed in Ref. 15. This expression is more con-
veniently used to make contact with experiments, although it
is equivalent to the expression of the mobility as a function
of kvstdvs0dl displayed on the left side of Eq.s3.1d. We will
return to this point in Sec. IV. For the second FDT,

E
0

`

kFstdFs0dleivtdt = mkBTgsvd, s3.3d

CFFsvd =E
−`

`

kFstdFs0dleivtdt = mkBT2 Regsvd.

s3.4d

Equationss3.1d ands3.2d on one hand, ands3.3d ands3.4d on
the other hand, are equivalentssee Appendix Ad, and they
correspond to the Einstein-Kubo formula and the Nyquist
formula, respectively. However, this equivalence, which
holds at equilibrium, cannot be maintained out of equilib-
rium, when one attempts to extend the FDT’s with the help
of a frequency-dependent effective temperaturef7,8g.
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IV. CASE OF A BATH OUT-OF-EQUILIBRIUM MEDIUM:
EFFECTIVE TEMPERATURES

Let us now consider the case where the Brownian particle
is immersed in an out-of-equilibrium medium, so that neither
the Einstein nor the Nyquist formulas hold true. The concept
of effective temperature has been introduced to quantify the
violation of these formulas and characterize the evolution of
the aging variables. In this situation, the system under study
is the aging medium itself, so that we are primarily interested
in the effective temperature associated with the violation of
the FDT relative to the bath, i.e., the violation of Eqs.s3.3d
ands3.4d. However, as noticed in Ref. 13, the effective tem-
peratures defined from these two equations are not the same.

A. Definition of the effective temperature

Let us start from Eq.s3.3d, and then define an effective
temperatureTeffsvd by the substitution

Tgsvd → Teffsvdgsvd s4.1d

so that

E
0

`

kFstdFleivtdt = mkBTeffsvdgsvd. s4.2d

Teffsvd must have the same analytic properties asgsvd, i.e.,
be analytic in the upper complex plane, so that it can be
viewed as an effective ac susceptibility. We can then make
use of this mapping between this effective temperature and
the ac susceptibility to modelTeff. For instance, let us con-
sider the case when this response is a power lawf16–18g, as
this is a universal dielectric response law that describes the
non-Debye responsexsvd of a wide class of dielectrics and
ferroelectrics in a broad range of frequencies. The substitu-
tion xsvd→Teffsvd, x`→T in this power-law response, for
instance in Eqs.s1d and s2d of Ref. 18, gives, respectively,

Teffsvd = Tf1 + s− ivt0dag, a , 0, s4.3d

Im Teffsvd = − sgnsvdfReTeffsvd − Tgtanpa/2, s4.4d

wherea is a negative constantf19g. In this mapping, asx` is
the high-frequency limit of the dielectric responsesa,0d, T
is the high-frequency limit of the effective temperature. In
order words,T is defined as the temperature at which the
relaxing snonagingd high-frequency modes “thermalize.”t0
is the characteristic relaxation time. Equations4.4d written
for realv follows from the Kramers-Kronig relations linking
the real and imaginary parts of the susceptibilitylike effective
temperatureTeff.

B. Link with the Brownian motion

The study of the Brownian motion does not give direct
access toTeff. Instead, we have argued in Ref. 13 that it gives
access to another effective temperatureTeffsvd defined ac-
cording to Eq.s1.2d. Applied to our problem, this equation
amounts to making the substitution

T Regsvd → TeffsvdRegsvd s4.5d

into Eq. s3.4d, so that

CFFsvd = 2mkBTeffsvdRegsvd. s4.6d

As noticed in our prior workfsee Eq.s4.14d in Ref. 13g,
TeffÞTeff. After Eqs.s4.1d and s4.5d ssee also Appendix Ad,
these effective temperatures are linked by the relationf14g

TeffsvdRegsvd = RefgsvdTeffsvdg. s4.7d

The solution of this equation requires a model for the fric-
tion. We assume that the friction takes the same generic form
as in the case where the bath is made of a continuum of
harmonic oscillatorsf20g:

gstd =
2

p
gdE

0

`

dvSv

ṽ
Dd−1

fcsvdcosvt. s4.8d

gd is a constant with the dimension of a frequency, and de-
termines the strength of the friction. The spectral density of
low-frequency modes of the environmental coupling is as-
sumed to be a power lawJsvd~vd, which defines the pa-
rameterd. fc is a cutoff for the spectral density in the high-
frequency limit. In the case of interest where 0,d,2 swhen
d.2, the Brownian particle acts as a free particle with renor-
malized massd the choice of a Lorentzian cutoff

fc = vc
2/svc

2 + v2d

is sufficient to avoid any divergence associated with the up-
per bound̀ of the integrals on the variablev. The analytic
expression ofgsvd with such a cutoff has been reported else-
wheref5,20g. Whenv!vc, we can take the limitvc→` in
Eqs.s6d and s10d of Ref. 5 which reduce tof21g

gsvd = vdS− iv

vd
Dd−1

, uvu ! vc, s4.9d

where

vd
2−d = gd

1

ṽd−1

1

sinsdp/2d
. s4.10d

Substituting into Eq.s4.7d the expressions ofTeffsvd and
gsvd displayed in Eqs.s4.3d ands4.9d, we findTeff under the
form

Teffsvd = TF1 +S uvu
v0

DaG, a , 0, uvu ! vc,

s4.11d

with v0~t0
−1. To make contact with prior worksf11–14g, we

choose to keepv0 as the parameter of the model, and express
t0 as a function ofv0, which amounts to writing Eq.s4.3d
under the form

Teffsvd = TF1 +
sinsdp/2d

sinfsd + adp/2g
S− iv

v0
DaG,

a , 0, uvu ! vc. s4.12d

The frequencyv0 separates low frequenciessi.e., slow
modes responsible for the aging of the mediumd, for which
one hasTeffsvd,Tsuvu /v0da, from high frequenciessi.e., fast
modesd, for which one hasTeffsvd,T. The equilibrium situ-
ation would correspond tov0=0, in which caseTeffsvd=T
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for any v. It can also formally be retrieved by taking the
limit a→0− associated with the substitutionT→T/2. Actu-
ally, Eq. s4.7d gives Teff as a function ofgsvd and Teffsvd,
and has been used in this way in the present work. However,
the opposite is true, i.e., ifgsvd is given by Eq.s4.9d andTeff

is given by Eq.s4.11d, then Eq.s4.7d is an equation inTeffsvd
which has Eq.s4.12d as the unique solution. This is shown in
Appendix B. Owing to the power law for the friction, these
two effective temperatures satisfy the same power law of the
form f1+sv /v08d

ag with the samea. They differ only by a
renormalization of the parameterv08, eventually complex. It
is important, however, to note that this same generic power
law for both Teffsvd and Teffsvd only results from the very
particular choice of the power law in Eq.s4.9d for the friction
gsvd. Should the friction be different, or at high frequency
sv not small with respect tovcd, then theTeffsvd solution of
Eq. s4.7d would have a different functional dependence. Nev-
ertheless, this particular case is of interest, since Eq.s4.11d
has been used as a heuristic law postulated both in experi-
mentsf11g to analyze the data, and in prior theoretical works
f13,14g to model the out-of-equilibrium dynamics.

C. Link with experiments

On an experimental point of view, the motion of the
Brownian particle can be investigated, aiming to determine
the effective temperature that characterizes the aging me-
dium f12g. This motion is linked to the medium through Eq.
s2.3d, with the mobilitym given in Eq.s2.2d. Combined with
Eq. s4.6d, these equationss2.2d and s2.3d lead to

Cvvsvd = kBTeffsvd2 Remsvd. s4.13d

Teff is then not only an effective temperature associated with
the bath, after Eqs.s4.6d and s4.7d, but also an effective
temperature for the Brownian particle, associated with the
violations of the FDT expressed in the form of Eqs.s3.2d and
s3.4d, respectively. In principle, this temperature can be de-
duced from independent measurements of Remsvd and
Cvvsvd. On an experimental point of view, however, it is
easier to determine the mean square displacement of the par-
ticle than its velocity correlation function. Therefore, we had
better consider the effective temperatureTeff

s1d associated with
the violation of the FDT expressed in the form of Eq.s3.2d:

msvdkBT eff
s1dsvd =E

0

`

kvstdvleivtdt = −
v2

2
E

0

`

Dx2stdeivtdt.

s4.14d

T eff
s1d is defined from Eqs.s4.13d and s4.14d as is shown in

Appendix A. The result, already derived in Ref.f14g, is:

TeffsvdRemsvd = RefmsvdkT eff
s1dsvdg. s4.15d

Comparing Eqs.s4.7d and s4.15d, we find that the equations
differ only by the substitutiongsvd→msvd. This is, how-
ever, an important difference, sincem, in contrast tog, is not
a power law ofv, unless the term −iv is negligible with
respect to gsvd in the expressionmsvd=mfgsvd− ivg−1

given by Eq. s2.2d. This situation is met only in the fre-

quency rangev!vd, which corresponds to the long-time
limit vdt@1, in which inertia can be neglected.

1. The long-time limit

In this limit,

msvd .
1

mgsvd
, uvu ! vd. s4.16d

In this case, the change in the exponent betweeng~vd−1 and
m~v1−d is pictured by 1−d→d−1, that is,d→2−d, so that
T eff

s1dsvdfa ,dg=Teffsvdfa ,2−dg; hence

T eff
s1dsvd = TF1 +

sinsdp/2d
sinfsd − adp/2g

S− iv

v0
DaG, uvu ! vd.

s4.17d

Note thatvd!vc. In practice, we could even take the
limit vc→` to study the Brownian motion with a bath at
equilibrium f5g. The conditionuvu!vd is thus much more
stringent than the conditionuvu!vc in Eq. s4.12d, and actu-
ally it corresponds to the long-time limit already investigated
in prior work f13g sinceuvu!vd meanst@vd

−1. In particular,
we have shownfEq. s5.8d in Ref. f13gg that at such long
times

Dx2std .
2kBT

m
vd

d−2v0
−a 1

Gsd − a + 1d
sindp/2

sinsd − adp/2
td−a,

vdt @ 1. s4.18d

Experiments made in this long-time limit have recently con-
firmed this time power law of the mean square displacement
Dx2std, and the frequency power law of the mobilitymsvd
f12g. The authors of this work could deduceT eff

s1dsvd from
their data, using a procedure which can be made more
simple. The procedure inf12g is the following. sad Laplace
transform Dx2std. sbd Derive the Laplace transformm̂szd
=msv= izd from the analytic expression ofmsvd by analytic

continuation.scd Determine the Laplace transformT̂ eff
s1dszd

from the analytic continuation of Eq.s4.14d with v= iz,

namely, 2m̂szdkBT̂ eff
s1dszd=z2Dx2̂szd. sdd Substitutez by −iv to

obtain finally T eff
s1dsvd. In the case wheremsvd and Dx2std

follow a power law, a simpler analysis could be the follow-
ing. sad Identify the power lawmsvd with Eqs. s4.16d and
s4.9d to deducevd andd. sbd Identify Dx2std with Eq. s4.18d
to derive a and v0. scd Substitute in Eq.s4.17d to deduce
T eff

s1dsvd. In addition, since the experiments aim at the deter-
mination of the properties of the medium in which the par-
ticle is immersed, the numerical application should rather be
made in Eqs.s4.11d and s4.12d to obtain the effective tem-
perature of the bath, rather than in Eq.s4.17d which gives the
effective temperature of the particle. This simple situation
has been met in experiments reported in Ref.f12g. The fact
that only the second term in the brackets of Eq.s4.17d has
been detectedf12g is simply due to the fact that the first one
is negligible in this long-time limit, sincev /v0@1 and a
,0. Note, however, thatmsvd has been found inf12g to
reduce to a power law only in a finite range of waiting times
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where the phase ofmsvd does not depend significantly onv
f12g. A significant departure from this behavior has been evi-
denced at long waiting times, in which casemsvd is no
longer a power law.

2. The general case

Most often, the measurements ofmsvd will reveal that it
does not follow a power law, either because the inertial term
is not negligible, i.e., we are not in the long-time limit, or
because the analytic form ofmsvd does not reduce to Eqs.
s2.2d and s4.9d. The latter case will be met, for instance, if
the medium under study is a disordered solidf15g. Still, one
can readily determine the effective temperature of the me-
dium from measurements of the mean square displacement
and mobility of the Brownian particle, using the following
procedure.sad Use interpolation techniquesssuch as spline
methods for instanced to determineDx2std at any time from
data at discrete times.sbd Fast Fourier transform techniques
can be used to compute the partial Fourier transform in the
second member of Eq.s4.14d:

kBT eff
s1dsvd = −

v2

2msvdE0

`

Dx2stdeivtdt s4.19d

at anyv, provided thatDx2std diverges more smoothly than
t2 in the long-time limit. This last condition simply means
that the anomalous diffusion exponentn must be smaller
than 2 to avoid divergence associated with kinematical ef-
fects.scd Use Eq.s4.19d to determineT eff

s1dsvd from the data
msvd and the result of the integration.sdd Teff can be deter-
mined from Eq.s4.15d. This simple procedure allows one to
deriveTeffsvd from the measurements of the mobility and the
mean square displacement of the Brownian particle even if
the analytic form ofmsvd is unknown. This is a proof that
the analysis of the motion of the Brownian particle is a pow-
erful tool to determine the effective temperature of an aging
medium in which the particle is embedded, provided the sys-
tem is in a stationary regime.

We also note that the use of the procedure involving the
Laplace transform suggested in some earlier worksf12,14g
would be even more intricate than in the long-time limit,
since the switch frommsvd to m̂szd cannot be done if the
analytic form of msvd is unknown. One can always use a
fitting procedure to approximate the experimental curves by
some polynomial or another more or less sophisticated func-
tion, but this can only introduce a source of error in the
analysis of the data and an additional step in the analysis
process. That is why, in our view, the Fourier transform
analysis of Eq.s4.19d following Sher and Lax in a general-
ized theory of the mobility for stochastic transportf15g
should be preferred to the Laplace transform analysis of the
same equation withv= iz envisioned inf12,14g.

On the other hand, the use of the Laplace transform is
suited to the study of the velocity correlation function when
the bath is at equilibriumf21g. Let us show, however, that
this is no longer the case when the bath is out of equilibrium.
The fact that the mobility reduces to a power law only in the
long-time limit means that the velocity correlation function

at shorter times does not reduce to a simple analytic form.
The Laplace Fourier transform of Eq.s2.1d is

zv̂szd + ĝszdv̂szd = F̂szd/m+ v0, s4.20d

wherev0=vst=0d; hence

kv̂szdl =
v0

z+ ĝszd
. s4.21d

After Eq. s4.9d,

gsivd = ĝszd = vd
2−dzd−1, s4.22d

and the inverse Laplace Fourier transform of Eq.s4.21d is
f21g

kvstdl = vst = 0dE2−d„− svdtd2−d
…, vct @ 1, s4.23d

whereE2−dsxd is the Mittag-Leffler function of index 2−d.
The conditionvct@1 is due to the fact that Eq.s4.9d, from
which Eq.s4.23d issues, is valid only in the rangev!vc. On
the other hand, the Laplace transform of the velocity corre-
lation function is, after Eq.s4.14d,

Ĉvvszd = kBm̂szdT̂ eff
1 szd. s4.24d

When the medium in which the particle is embedded is at
equilibrium,Teff

1 =T. In this case, after Eqs.s4.21d ands4.22d,
and after the analytic continuation of Eq.s2.2d for z= iv:
mszd=fz+ ĝszdg−1, we find Cvvstd=skBT/mv0dkvstdl. This is
the regression theorem, which states that the correlation
function and the mean value of a variable at equilibrium
follow the same lawf13g. When the medium is aging, how-
ever, the velocity of the Brownian particle is also out of
equilibrium, and this regression theorem is violated. To be
more specific, Eq.s4.21d and Eq.s4.23d still hold true, but

T̂eff
1 in Eq. s4.24d depends onz so thatCvvstd is no longer

proportional tokvstdl. Due to the breakdown of the regres-
sion theorem, the velocity correlation function can no longer
by expressed as a Mittag-Leffler function. Only its
asymptotic behavior at long times is knownsand reported in
Ref. f13gd, corresponding to the case where Eqs.s4.17d and
s4.18d can be used. At shorter times, Eq.s4.19d is thus defi-
nitely of a most practical use to determine the effective tem-
peratureTeff

1 , not only from an experimental point of view,
but also from a theoretical point of view.

Let us recall that the last stepsdd, use Eq.s4.15d to deter-
mine Teffsvd, sometimes missing in prior experimental
works, is of basic importance here, since the functional de-
pendences ofTeff

1 svd and Teffsvd are not the same in the
general case.

V. RANDOM FORCE FLUCTUATION AND DISSIPATION

Equations4.6d for CFFsvd, with gsvd given by Eq.s4.9d
and Teffsvd given by Eq. s4.11d, yields the noise spectral
density:
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CFFsvd = mkBTF1 +S uvu
v0

DaG2vdS uvu
vd

Dd−1

sin
dp

2
,

uvu ! vc. s5.1d

Note the second term in the square brackets is the leading
term at small frequencies. Therefore, the chosen modeling of
the effective temperature ensures that the density of slow
modes in the noise is larger than in a thermal bath at tem-
peratureT f7,13,22g. This is indeed expected, since the slow
modes are responsible for the aging. The random force cor-
relation functionkFstdFst8dl can be obtained by means of the
Fourier integrals5.1d, which converges provided that the
condition1

a + d . 0 s5.2d

is satisfied. Note this is equivalent to the condition

Teffsvd . T s5.3d

at anyv, as can be seen from Eq.s4.12d. One can use either
Laplace transform or Fourier transform to determine the
noise correlation function. In continuity with the previous
section where we used the Laplace transform to analyze the
velocity correlation function, we follow here the same pro-
cedure for the noise. The Laplace transform ofCFF is readily
deduced from the analytic continuation of Eq.s4.2d which,
for v= iz, can be written

ĈFFszd = mkBT̂effszdĝszd. s5.4d

After Eq. s4.9d and s4.22d and Eq.s4.12d, Eq. s5.4d can be
written

ĈFFszd = mkBTvdF zd−1

vd
d−1 +

sinsdp/2d
sinfsd + adp/2g

zd+a−1

vd
d−1v0

aG .

s5.5d

The inverse Laplace transform of this power-law series is a

regular function if and only ifĈFFszd→0 whenz→`, i.e., if
d,1. In this case, the result is

kFstdFst8dl = mkBTgsut − t8ud

+
2

p
mkBTvd

2 sin
pd

2
cos

psa + dd
2

3Gsa + dd
ut − t8u−sd+ad

vd
dv0

a , d , 1, s5.6d

with

gstd =
2

p
vd

2 sin
pd

2
cos

pd

2
Gsdd

utu−d

vd
d , d , 1. s5.7d

The first term in Eq.s5.6d is the inverse Fourier transform of
Eq. s3.4d so the second term is the correction to the second
FDT induced by the aging of the medium under study.

The Ohmic cased=1 is the limit case where the inverse
Laplace transform is not a function, but a distribution:

kFstdFst8dl = g1mkBTF2dst − t8d +
2

p
cos

psa + 1d
2

3Gsa + 1d
ut − t8u−sa+1d

v0
a G . s5.8d

It is important to note that Eqs.s5.6d–s5.8d are inverse Fou-
rier transforms of expressions deduced from analytic con-
tinuation sv= izd of functions established for realv in the
limit v!vc. Therefore, Eqs.s5.6d–s5.8d are valid, like Eq.
s4.23d, only in the limit vct@1. Due to the lack of any sin-
gularity in the correlation functions, we can extend Eqs.s5.6d
ands5.7d to any time, which amounts to considering the limit
vc→`. This is also usually done ford=1. Indeed, in the
limit vc→` at d=1, gstd~dstd so that the the limitvc→`
amounts to reducing the Langevin equation to its nonre-
tarded formmdv /dt+hvstd=Fstd, with h the viscosity. The
Dirac term in Eq.s5.8d corresponds to the white Gaussian
noise of zero meankFstdFst8dl=2hkBTdstd characteristic of
the Brownian motion in the Ohmic case at equilibrium.

Whend.1, however, the cutoff atvc is needed to avoid
divergence of the Fouriersor Laplaced transforms or the in-
tegrals, andkFstdFst8dl has to be determined by taking the
inverse Fourier transform of Eq.s4.6d, or the inverse Laplace
transform from Eq.s5.4d with gsvd or ĝszd deduced from Eq.
s4.8d including the functionfc. The expressions ofgsvd and
ĝszd are still analytic for the particular case of a Lorentzian
cutoff function f20g so that the inverse transform of Eqs.
s4.6d ands5.4d can be computed if desired. Note also that the
cutoff at high frequency can be skipped for the investigation
of the velocity or the displacement correlation function of the
particle in the whole range 0,d,2, while it cannot be
skipped for the noise friction correlation function whend
.1. This is related to the fact that the noise is much less
regular than the correlation functions of the variables of the
Brownian particle. The Dirac peak in Eq.s5.8d when
kvstdvst8dl reduces to a regular Mittag-Leffler function at
equilibrium whend=1 is an illustration of this difference.
Below, we consider only the sub-Ohmic cased,1, since the
results in the superdiffusive case depend on the cutoff func-
tion fc, i.e., on the particular medium under study. The case
d=1 will be discussed separately in the next section, since it
is a common case met in experiments, underlying the physics
of Brownian motors for instance.

Usually, for aging systems, the effective temperature is
associated with the violation of the FDT formulated in real
time. In the present case, this effective temperatureTeff8 st
− t8d should then be defined by Eq.s1.1d which takes the
form

xFFst − t8d = beff8 st − t8dust − t8d
]kFstdFst8dl

]t8
s5.9d

where b8=1/skBTeff8 d. Note that Eq.s5.9d is written taking
into account that we deal with a stationary regime where

1The conditions5.2d is a low-frequency criterion: it stems from
the low-v behavior of the integrand. As for the convergence at
infinity, it is effective, due to the existence of the cutoff atvc.
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kFstdFst8dl andTeff8 depend only ont− t8 and not ont and t8
separately. After Eq.s2.1d,

xFFst − t8d = must − t8d
]gst − t8d

]t8
. s5.10d

At equilibrium whereTeff8 =T, the identification of the second
members of Eqs.s5.9d and s5.10d gives, after integration,

kFstdFst8dl = mkBTgsut − t8ud s5.11d

plus an integration constant which, however, is zero since
both members vanish in the limitut− t8u→`. Equations5.11d
is just the inverse Fourier transform of Eq.s3.4d. When the
medium under study is out of equilibrium, Eqs.s5.6d and
s5.7d give, whent. t8,

]kFstdFst8dl
]t8

= mkBT
]gst − t8d

]t8
F1 +

Gsa + d + 1d
Gsd + 1d

3
cospsd + ad/2

cospd/2

st − t8d−a

v0
a G . s5.12d

From this equation, we can deduce the effective temperature
defined by Eq.s5.9d:

Teff8 st − t8d = TF1 +
Gsa + d + 1d

Gsd + 1d
cospsd + ad/2

cospd/2

st − t8d−a

v0
a G,

d , 1. s5.13d

Remember the model is meaningful only ifa+2.d, since
this condition is equivalent ton,2 wheren is the anomalous
diffusion f13g, and equivalent to the condition needed for the
velocity correlation functionkvstdvst8dl to exist f13g. This
condition is actually more stringent than the conditiona+d
.−2 for which, after Eq.s5.13d

Teff8 st − t8d . T. s5.14d

Therefore the inequalitys5.14d is always satisfied when the
model applies. This is known to be the condition forTeff8 to
be meaningful in terms of the effective temperature for an
aging variablef1,8,9g.

VI. CONCLUDING REMARKS AND DISCUSSION

The present work analyzes the possibility to use the
Brownian motion of a particle as a probe to characterize the
aging of the complex medium in which it is immersed. The
Brownian motion is described by the Langevin equation in
Eq. s2.1d, which has been taken in its generalized form in-
cluding a memory friction. The common route to derive this
equation is to model the thermal environment by an infinite
and continuous set of harmonic oscillators linearly coupled
to the particle. It is commonly accepted that, for a heat bath
at thermal equilibrium, all the statistic properties of the noise
are uniquely fixed, i.e., independent of any further micro-
scopic details of the thermal bath. Then, it has been inferred
that any dissipative dynamics of the forms2.1d in contact
with an equilibrium heat bath can be represented by such a
harmonic oscillator bathf23g. Such a harmonic oscillator
bath, however, does not age. Therefore, the actual heat bath

in the case of an aging medium must be different, and there
is no proof that Eq.s2.1d is still relevant to the description of
the motion of the particle with such a different bath. In order
to justify the use of Eq.s2.1d, we have restricted ourselves to
the case where the medium, although not at equilibrium, is in
a quasistationary state for a given waiting timetw. The use of
the Langevin equation formalism to describe the Brownian
motion beyond stationarity is thus questionable. This is a
basic reason why the present study is restricted to the sta-
tionary case. In addition the concept of a frequency-
dependent effective temperature is meaningful only in the
stationary case.

The two effective temperatures that are most relevant to
describe the evolution of the Brownian particle and the aging
medium in the frequency space areT eff

1 svd andTeffsvd, re-
spectively. These temperatures are those that have the same
expected analytic properties, allowing for their analytic con-
tinuation in the complex plane. They equalize only at equi-
librium, which can be reached only if the medium is itself at
equilibrium. If the medium is aging,T eff

1 ÞTeff at any fre-
quency. There is, however, another temperatureTeff which
makes the link between the Brownian motion and the dy-
namical properties of the aging medium. Measurements of
the mobility and mean square displacement of the Brownian
particle give direct access toT eff

1 svd. Then Teff can be de-
duced from Eq.s4.15d. The determination ofTeff from the
knowledge ofTeff is then possiblefthrough Eq.s4.7dg if and
only if the friction gsvd is known. This is indeed expected
since, in the Langevin equation approach, the interaction be-
tween the Brownian particle and the surrounding medium is
entirely contained in the friction.

In a simple power-law model, the aging properties of the
medium can be encoded in a frequency-dependent effective
temperature entirely defined by the exponenta and the char-
acteristic frequencyv0. Of course, these two variables may
depend on the waiting timetw, i.e., a=astwd, v0=v0stwd.
However, botha and v0 are considered as constants at the
scale of the observation time which must then be kept small
as compared withtw. This condition can be writtenvtw@1,
and states that the two time scales, respectively characteriz-
ing the times pertinent for the measuring process and the
waiting time or the age of the system, must be kept well
separated. The long-time limit in the present work should
then not be regarded as the limitst− t8d→`, but the limit
st− t8d@vd

−1,v0
−1, while keepingst− t8d! tw. The investiga-

tion of the Brownian motion in this limit is sufficient to
determine the two parametersa ,v0 that characterize the ag-
ing of the medium under studysat giventwd f13g, in case the
power-law model used in the model applies. Beyond this
limit, the velocity correlation functionCvv for the Brownian
particle cannot be put in a closed form, due to the violation
of the regression theorem which prevents any simple de-
scription ofCvv in terms of Mittag-Leffler functions. On the
other hand, it is possible to find a closed form for the corre-
lation function of the bath coordinatesthe noised, at least in
the regimed,1 where this function is regular even without
any cutoff at high frequency for the mode density of the bath.
In this case, the effective temperatureTeff8 st− t8d associated
with the violation of the FDT for the aging medium in its
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time formulation satisfies the stability criterionTeff8 .T at
any time, so that our description of the aging of the medium
is fully self-consistent.

The regular behavior of the noise correlation function is
crucial to determine the effective temperatureTeff8 of the
bath. In particular, for the common cased=1, the white noise
in Eq. s5.8d corresponding to the Einstein term has to be
smoothed. The introduction of a Lorentzian cutoff function
fcsvd=vc

2/ svc
2+v2d in the definition of the friction in Eq.

s4.8d gives fsee, for instance, Eq.s4.8d in Ref. f2gg

gst − t8d = g1vce
−vcut−t8u. s6.1d

In this expression,vc
−1 acts as a measure of the memory time

of the friction. Note that ifgstd is given by Eq.s6.1d, then
Teffsvd is not given by Eq.s4.12d for v.vc. However, since
v0!vc, Teffsvd.T at high frequencyv.vc, so thatTeffsvd
is not sensitive to the cutoff. A good approximation is then to
keep Eq.s4.12d at any frequency, and consider the effect of
the cutoff on the friction only. Note thatgstd→2g1dstd when
vc→`. Equation s6.1d is actually more realistic than the
Dirac peak which implies infinite variance of the force. The
substitutiondst− t8d by gst− t8d /2 with gst− t8d given by Eq.
s6.1d is sufficient to smooth Eq.s5.8d and makes possible the
determination ofTeff just at it has been reported above for
d,1. The noise correlation in Eq.s5.11d with gstd given by
Eq. s6.1d has then the same time dependence as in the case of
two stochastic processes, which might be considered as real-
istic versions of almost uncorrelated noise, namely, the
Ornstein-Uhlenbeck process and the random telegraph signal
f24g.

The out-of-equilibrium dynamics of the bath generate a
time correlation of the noise force which satisfies a power
law in time, after Eq.s5.8d. This means that the slow relax-
ation of the out-of-equilibrium medium results in a correla-
tion of the noise extending to a long-time scale. The out-of-
equilibrium situation depicted in this work is thus very
different from the introduction of a time-dependent tempera-
ture in Brownian thermal ratchetsf25g. While kFstdFst8dl
~Tdst− t8d at equilibrium, the nonequilibrium motion of the
thermal ratchet is generated by a time-dependent temperature
Tstd in the noise correlation function, so thatkFstdFst8dl
~Tstddst− t8d. In a few cases, the Dirac distribution is re-
placed by a peaked function such as Eq.s6.1d, but it only
shifts the noise properties from uncorrelatedswhite noised to
almost uncorrelated noise, in contrast with the long-range
correlation found in the present work. Clearly, the out-of-
equilibrium motion of the particle generated by the substitu-
tion Tdst ,t8d→Tstddst ,t8d in the physics of Brownian motors
corresponds to a quite different situation where the Brownian
particle either thermalizes instantaneously with different
baths at different temperatures with which it is in contact at
different times, or “follows” an adiabatic transformation of
the bath which remains at equilibrium at any time.

Finally, we cannot expect that the power law envisioned
for the friction in this work holds true at any frequency, and
for any aging medium, beyond the fact that we have already
outlined the conditionv!vc with vc the characteristic cut-
off frequency of the density spectrum of the medium under

study sDrude, Debye, Fermi frequency, etc.d. For instance,
the Langevin equation with the quite different Coulomb fric-
tion has to be chosen if the random force in the medium
originates from collision of molecules, or in granular mate-
rials f28g. We cannot either expect the power law forTeff to
be always valid. We can take advantage of the analogy for-
mulated in this work between effective temperature and ac
dielectric susceptibility to note that relaxation motion of in-
ternal modes in ferroelectrics gives a logarithmic contribu-
tion

x ~ fflns1/vt0dgj − ispj/2dsgnsvdflns1/vt0dgj−1g,

the real part of which eventually dominates the real part of
the susceptibilityf18,26,27g. This logarithmic law might also
apply to the effective temperatureTeffsvd, instead of Eqs.
s4.3d and s4.4d, depending on the frequency range explored
and the physics at the origin of the aging of the system in-
vestigated.
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APPENDIX A

In this appendix, we derive trivial analytic properties
which we use to link the effective temperatures of the
Brownian particle and the out-of-equilibrium medium with
the velocity and random force correlation functions, respec-

tively. Let kstd be a function of time andk̃std=ustdkstd the

causal function. The Fourier transformk̃svd of k̃stdd,

k̃svd =E
0

`

eivtkstddt, sA1d

is the convolution product of the Fourier transforms ofkstd
andustd, which can be written in the form of the well-known
Kramers-Kronig relation:

k̃svd =
ksvd

2
+ i E dv8

2p

ksv8d
v − v8

. sA2d

In addition, if kstd is even, its Fourier transformksvd is real
so that

ksvd = 2 Rek̃svd. sA3d

As the velocity correlation function and the random force
correlation function are even functions of time, Eqs.sA1d
andsA3d apply. At equilibrium, they are Eqs.s3.1d ands3.2d,
respectively, for the velocity, and Eqs.s3.4d and s3.3d, re-
spectively, for the random force. Out of equilibrium, Eq.
sA1d can be identified with Eq.s4.2d in which case Eq.sA3d
takes the form

CFFsvd = 2mkB RefgsvdT effsvdg,

which is a combination of Eqs.s4.6d and s4.7d. For the ve-
locity, if Eq. sA1d is identified with Eq.s4.14d, then Eq.sA3d
takes the form
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Cvvsvd = 2kB RefmsvdTeff
s1dsvdg,

which is a combination of Eqs.s4.13d and s4.15d.

APPENDIX B

Equations4.7d determinesTeffsvd from the knowledge of
Teffsvd. Let us show that the opposite holds true, i.e., if we
assume thatTeff is given by Eq.s4.11d, Eq. s4.12d follows.
According to Eqs.s4.7d and s4.11d, Teff can be written as

Teffsvd = T + Ts2dsvd,

with

Tsv/v0da = ReTs2dsvd −
Im gsvd
Regsvd

Im Ts2dsvd. sB1d

From Eq.s4.9d, one has

Im gsvd
Regsvd

= sgnfvgcot
dp

2
, sB2d

where sgnfvg denotes the sign ofv. After Eq. sB1d, Ts2d

~va, and it has the same analytic properties asgsvd~vd−1

after Eq.s4.2d. Therefore, we have just to make the substitu-
tion d−1→a, i.e., d→a+1 into Eq.sB2d to find

Im Ts2dsvd
ReTs2dsvd

= − sgnfvgtan
ap

2
. sB3d

From Eqs.sB1d and sB3d, it is then straightforward to find

Teffsvd = TF1 +
sinsdp/2d

sinfsd + adp/2g
S− iv

v0
DaG , sB4d

which is Eq.s4.12d. The functionTeffsvd is analytic in the
whole complex plane, except for a cut on the real negative
axis. Note also that, for realv,

ReTeff
s2dsvd = TF1 +S uvu

v08
DaG , sB5d

with

v08 = v0Fsinsdp/dcossap/2d
sinfsd + adp/2g G−1/a

. sB6d

T eff
s2d can then be viewed as an analytical continuation in the

complex frequency plane of an effective temperature which
takes the form of Eq.s4.11d, with renormalizedv0 parameter
according to Eq.sB6d. The functional dependence on fre-
quency is then the same in both cases, and the aging system
is then consistently described byTeff and sord Teff for the
particular choice of a power law for the friction.

f1g L. F. Cugliandolo, J. Kurchan, and G. Parisi, J. Phys. I4, 1641
s1994d.

f2g N. Pottier and A. Mauger, Physica A282, 77 s2000d.
f3g R. Kubo, Rep. Prog. Phys.29, 255 s1966d.
f4g R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II:

Nonequilibrium Statistical Mechanics, 2nd ed. sSpringer-
Verlag, Berlin, 1991d.

f5g A. Mauger, Physica A322, 215 s2003d.
f6g P. C. Hohenberg and B. I. Shraiman, Physica D37, 109

s1989d.
f7g L. F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E55,

3898 s1997d.
f8g L. F. Cugliandolo and J. Kurchan, Physica A263, 242s1999d.
f9g T. S. Grigera and N. E. Israeloff, Phys. Rev. Lett.83, 5038

s1999d.
f10g D. Hrissonand and M. Ocio, Phys. Rev. Lett.88, 257202

s2002d.
f11g L. Buisson, S. Ciliberto, and A. Garcimartín, e-print cond-mat/

0306462.
f12g B. Abou and F. Gallet, Phys. Rev. Lett.93, 160603s2004d.
f13g N. Pottier and A. Mauger, Physica A332, 15 s2004d.
f14g N. Pottier, e-print cond-mat/0404613.
f15g H. Scher and M. Lax, Phys. Rev. B7, 4491s1973d.

f16g A. K. Jonscher, NaturesLondond 267, 673 s1977d.
f17g A. K. Jonscher,Dielectric Response in SolidssChelsea Dielec-

tric Press, London, 1983d.
f18g A. A. Fedorenko, V. Mueller, and S. Stepanow, e-print cond-

mat/0406401.
f19g W. Kleeman, J. Dec, and R. Pankrath, Ferroelectrics286, 21

s2003d; 291, 75 s2003d.
f20g C. Aslangul, N. Pottier, and D. Saint-James, J. Phys.sFranced

48, 1871s1987d.
f21g N. Pottier, Physica A317, 371 s2003d.
f22g L. F. Cugliandolo, e-print cond-mat/0210312.
f23g G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. A37,

4419 s1988d.
f24g C. W. Gartiner, inHandbook on Stochastic Methods for Phys-

ics, Chemistry and the Natural Sciences, 3rd ed., Springer Se-
ries in Synergetics Vol. 13sSpringer-Verlag, Berlin, 2004d.

f25g For a review on Brownian motors, see P. Reimann, Phys. Rep.
361, 57 s2002d.

f26g T. Nattermann, Y. Shapir, and I. Vilfan, Phys. Rev. B42, 8577
s1990d.

f27g L. B. Ioffe and V. M. Vinokur, J. Phys. C20, 6149s1987d.
f28g H. Hayakawa, e-print cond-mat/0407789.

BROWNIAN MOTION IN AN AGING MEDIUM PHYSICAL REVIEW E 71, 011109s2005d

011109-9


