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Brownian motion in an aging medium
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The motion of a particle in an aging medium can be described by the generalized Langevin equation, in the
limit of long waiting timet,, where the medium is in a quasistationary regime at the scale of the observation
times investigatedt<t,). In this framework, we analyze the link between the Brownian motion and the
effective temperature which characterizes the out-of-equilibrium properties of the medium. This effective
temperature involves a frequency-dependent effective temperaiyi@) formally identical to a generalized
susceptibility. The analytical results are reported in the case Whgio) is mapped to the universal non-
Debye power-law ac response met for instance in dielectrics. In the particular case where the viscous friction
coefficient is a power lawy(w) <|w|®%, contact is made with the heuristic expressiug=T[1+(w/wp)*],
postulated in prior experimental and theoretical works. A closed analytic form of the time correlation function
of the medium coordinatéhe noise forceCer(t—t")=(F(t)F(t’)) is obtained, in the subdiffusive reginié
<1) whereCrg(t-t’) is a regular function. This time correlation is long range. We also determine another
effective temperaturé g(t—t') of the medium, usually defined in aging systems as the temperature associated
with the violation of the fluctuation-dissipation theorem in its time formulation. This temperature takes the
form T g(t—t")=T[1+(|t=t'|/te) *]>T. The results are discussed and compared with experiments.

DOI: 10.1103/PhysRevE.71.011109 PACS nuni)er05.40—a, 02.50.Ey

I. INTRODUCTION sirable a different theoretical approach of aging in the Fou-
- . S rier space of frequencie®. Hohenberg and Shraimdi6]
Statlstlpal properﬂe; Of. out-of-eq.u'lht?rlum systems arehave defined an effective temperaturg(w) for stationary
characterized by the violation of equilibrium theorems suchnonequilibrium systems through the relation between fluc-
as the fluctuation-dissipation theord®DT). Since the rela- tuation and dissination in the Fourier space:
tion between the autocorrelati@(t,t’) and the susceptibil- P pace-
ity x(t,t") of any variable at equilibrium in the classical limit Clw) = 2T Im 1.2
of the FDT is linear in temperature, the violation factor of the wC(w) B Terf(@)1M x(@). (1.2
FDT for an aging varllable is Commonly used to define ann; equilibrium, T.(t,t")=Tex(w)=T, and Egs.(1.1) and
effective temperatur@.q by the relation1] (1.2 reduce to the FDT expressed in real and Fourier space,
AC(tt) respectively. Note Eq1.1) depends on two timest’, while
— = KgTlg(t,t)x(L,t). (1.1) Eq._(1.2) depends on one frequency only, because of the
ot stationary process corresponding to the case when all quan-

The B : . faf icle | imol | tities in Eq.(1.1) depend ort—t’ only. We only consider this
e Brownian motion of a free particle is a simple example ,qe i the present work. In practice, this situation can be

of' an aging sygterﬁZ]. This moti_on is .described by a gener- ot in aging sustems, when “observed” at a time seafe
alized Langevin equatiop3,4], in which the effect of the g4 with respect to the waiting timg,. In this case, the

environmenf(the thermal bathis encoded in a friction term g\ sconyinility, the correlation function, and the effective tem-

and.a} nqiszlterlm. Under the effect of t_hebldiffusg)n of the,perature defined from E@1.2) are parametrized by the wait-
particle, its displacement is an aging variable, and a quantl|’ng time or aget,, [7,8]. The fluctuation and dissipation of

tative study of the related effective temperature has bee{'he medium are studied at given ageas a function of, in
achieved when the bath is at gqpilibriqu]. A ._a frequency range that satisfies®<t,,. ,

Tue case when thgrhb_ath_ is itself out of equilibrium is '\ qte that aging is usually defined as the lack of invariance
much more intricate. This situation is met in expenme_ntsby time translation in the infinite time limit. Aging itself is
where_the .Brownlan diffusing partlclg is a t.racer, the mOt'OnactuaIIy beyond the scope of this study, since the use of Eq.
of V\I'T)'Ch is used as ? Erobe_ to E)nvs;tlgatﬁ th ,ou,t'Of'(l.Z) requires stationary dynamics. Nevertheless, the term
equilibrium properties of the aging bath In which It 1S Im- o qin0 medium is used, because the observation of stationary

mersed. One difficulty comes from the experiments themy, ot equilibrium dynamics on a large time scale requires

selves. While the formalism of aging phenomena is best dong, e mg with slow dynamics, a feature of aging systems.
in real time-space, the use of optical spectroscopy {0 INVes-" paaniy several experimental determinations of effective
tigate out-of-equilibrium experimental properties makes de'temperature in the Fourier space have been achieved in vari-
ous aging systemi9-12]. In a first attempt to address this
problem, the generalized Langevin equation has been used to
*Email address: mauger@ccr.jussieu.fr determine the motion of the diffusing particle embedded in

ot-t')
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the aging systenmi13]. It has been argued in this work that

the asymptotic Fourier analysisorresponding to the long- v(w) = wo)F(o), wo)= m
time limit) can be used to characterize the aging medium, Y

from the measurement of the mobility and the displacemenivhich defines the frequency-dependent mobilityof the
autocorrelation function of the Brownian particle. However, particle. BothF(t) and the solutiorv(t) of the generalized
equivalent expressions of the FDT lead to nonequivalent eft angevin equation2.1) can then be viewed as stationary

fective temperatures when the FDT is viola{d®,14. The  random processes with spectral densities linked by
first purpose of this papers is to investigate the self-

consistency of this approach, and analyze the link with ex- C,,(w) = | () |*Cee(w). (2.3
perimental studies of the Brownian motion. o o . _

In case Eq(1.2) cannot be usettime invariance broken In Eq. (2.2) the friction coefficienty(w) is the Fourier trans-
the study of the dynamics in the real time-space from Eqform of the retarded kernefy(t), as defined byy(w)
(1.1) is unavoidable. We then found it also desirable to study= S~ 3(t)e'“'dt.

Te(t,t’) for the aging medium in our model although we

only conside_r the stationgry case: this is the only_temperatu_re lil. CASE OF A BATH AT EQUILIBRIUM:

fchat can be investigated in the range of obser\{atlon and wait- FLUCTUATION-DISSIPATION THEOREMS

ing times where a frequency-dependent effective temperature

is not defined. It is the second purpose of the present work to We start from a prior work13], and use the same nota-
report this study. tions. In particular, the expressions of the first FDT which

The paper is organized as follows. We briefly recall theapplies to the velocity of the Brownian particle and the sec-
Langevin equation used to describe the diffusion of theond FDT relative to the bath have already been derived in
Brownian particle(Sec. I). We recall in Sec. Ill the formu- [13], and we just recall here the resulisgs.(2.9—<2.14 in
lations of the fluctuation-dissipation theorems which apply toRef. 13. For the first FDT,
both the velocity of the Brownian particlérst FDT) and the .
random force of the thermal batbecond FDT, provided the f
bath is at equilibrium. When the bath is not at equilibrium,
its aging can be characterized by an effective temperature in

(2.2

(v(t)v(0))e“dt
0

the frequency space, which has the analytic properties of a =kTu(w)

generalized susceptibility, so that universal laws of response o [ ‘

functions can be used to model it. We envision in Sec. IV the =- ?J ([x(t) = x(0)]Pe'“dt, (3.1
0

case of the universal power-law ac response applying to a

wide class of problems and materials, including dielectrics

and ferroelectrics, in a broad range of frequencies. To make o )

contact with prior works, we consider the case when the time Cplw) = f (v(tv(0))e“'dt=kT2 Reu(w). (3.2
or frequency dependence of the friction reduces to a power -

law. The link with recent experimenf42] is then discussed.

We analyze in Sec. V the correlation function of the agingterms of the mean square displacemel?(t)=([x(1)

variable of the medium under study, namely, the friction n . . o
noise. We derive the corresponding effective time-dependentx(o)] ) displayed in Ref. 15. This expression is more con-

temperaturdl’; which describes the aging of the system un_yenien.tly used to make contact with experiments, aIthough it
der study, as defined from the violation of the real time for-IS €quivalent to the expression of the mobility as a function
mulation of the second FDT. We find that it satisfies the®f (?(Dv(0)) displayed on the left side of E¢3.1). We will
criterion T.(7) > T for any observation time, as is required  éturn to this point in Sec. IV. For the second FDT,

for this parameter to have the meaning of an effective tem-

We have added in Eq3.1) the expression of the mobility in

perature{1,7,8]. f (F(OF(0))edt= mkgTy(w), (3.3
0
Il. DIFFUSION IN A STATIONARY MEDIUM .
The motion of a diffusing particle of mass evolving in Crr(w) =f (F(HF(0))“'dt= mksT2 Re(w).

a stationary medium is usually described by the generalized "w
Langevin equatiof3,4] (3.9
do e dx Equationg3.1) and(3.2) on one hand, an8.3) and(3.4) on
ma:—mf Yi-tHo)dt' +F(), v =qr (2.1  the other hand, are equivaletgee Appendix A and they

correspond to the Einstein-Kubo formula and the Nyquist
formula, respectively. However, this equivalence, which
in which F(t) is the Langevin random force acting on the holds at equilibrium, cannot be maintained out of equilib-
particle andy(t)=(t)6(t) is a retarded friction kernel. The rium, when one attempts to extend the FDT’s with the help
Fourier transform of Eq(2.1) is of a frequency-dependent effective temperafi;&].
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IV. CASE OF A BATH OUT-OF-EQUILIBRIUM MEDIUM: Crr(@) = 2mkgTer(w)Re Y w). (4.6)

EFFECTIVE TEMPERATURES _ _ _ _
As noticed in our prior worfsee Eq.(4.14) in Ref. 13,

Let us now consider the case where the Brownian particler .+ 7. After Egs.(4.1) and (4.5 (see also Appendix A

is immersed in an out-of-equilibrium medium, so that neitherthese effective temperatures are linked by the re|dﬂ(§ﬁ
the Einstein nor the Nyquist formulas hold true. The concept

of effective temperature has been introduced to quantify the Ter(w)Re y(w) = R Y(w) Tegi(w)]. (4.7)
violation of these formulas and characterize the evolution ofry,. <o1ution of this equation requires a model for the fric-
the aging variables. In this situation, the system under study,, \ve assume that the friction takes the same generic form
is the aging medium itself, so that we are primarily intereste s in the case where the bath is made of a continuum of
in the effective temperature associated with the violation o armonic oscillator$20]:

the FDT relative to the bath, i.e., the violation of E¢3.3)

and(3.4). However, as noticed in Ref. 13, the effective tem- 2 - )\t
peratures defined from these two equations are not the same. A = g J . do| =] flw)coset. (4.8
A. Definition of the effective temperature vs is a constant with the dimension of a frequency, and de-
Let us start from Eq(3.3), and then define an effective termines the strength of the friction. The spectral density of
temperatureZ +(w) by the substitution low-frequency modes of the environmental coupling is as-
sumed to be a power lad(w) = w’ which defines the pa-
TH©) = Te( @) Hw) (4.1 rameters. fc is a cutoff for the spectral density in the high-
so that frequency limit. In the case of interest where.@<2 (when

6> 2, the Brownian patrticle acts as a free particle with renor-

* - malized massthe choice of a Lorentzian cutoff
f (F(HF)e“'dt = mkgTeq(w) Y(w). (4.2 o
0 f.= 0 (w2 + w?)
Ter(w) must have the same analytic propertiesyés), i.e., s sufficient to avoid any divergence associated with the up-

be analytic in the upper complex plane, so that it can bger bound= of the integrals on the variable. The analytic
viewed as an effective ac susceptibility. We can then makexpression ofy(w) with such a cutoff has been reported else-
use of this mapping between this effective temperature angihere[5,20]. Whenw < ., we can take the limito,— o in

the ac susceptibility to modéley. For instance, let us con- Egs.(6) and (10) of Ref. 5 which reduce t§21]
sider the case when this response is a powel{ l6x-18, as

H 51
this is a universal dielectric response law that describes the _ (ﬂ) < 4.9
non-Debye responsg(w) of a wide class of dielectrics and o) =, ol <o, 4.9
ferroelectrics in a broad range of frequencies. The SUbStitu\ivhere
tion x(w) — Teri(w), x— T in this power-law response, for
instance in Egs(1) and(2) of Ref. 18, gives, respectively, oeg 1 1
w’s :%THW' (4.10
Tor(®) = T[1 + (w7, <0, 4.3 " sin(dm/2)
Substituting into Eq.(4.7) the expressions of.4(w) and
Im Zei(w) = - sgriw)[ReTer(w) — Titanwal2, (4.4 y(w) displayed in Eqs(4.3) and(4.9), we find Te; under the

wherea is a negative constafit9]. In this mapping, ag.. is form

the high-frequency limit of the dielectric resporige<0), T ||\«

is the high-frequency limit of the effective temperature. In Ter(w) =T| 1+ w—o , a<0, |0 <o,

order words,T is defined as the temperature at which the

relaxing (nonaging high-frequency modes “thermalize7 (4.1

is the characteristic relaxation time. Equati@h4) written  with w75, To make contact with prior works1-14, we

for real w follows from the Kramers-Kronig relations linking choose to keepy, as the parameter of the model, and express
the real and imaginary parts of the susceptibilitylike ef'fectiveTO as a function ofw,, which amounts to writing Eq(4.3)
temperatureZeg. under the form

B. Link with the Brownian motion

sin(6m/2) <—iw)“]

The study of the Brownian motion does not give direct sin(8+ a)w/2]\ w, '

access td . Instead, we have argued in Ref. 13 that it gives < <

access to another effective temperatiligg(w) defined ac- a<0, |o| <o 4.12

cording to Eq.(1.2). Applied to our problem, this equation The frequencyw, separates low frequencie@.e., slow

amounts to making the substitution modes responsible for the aging of the medjufor which

one hasT () ~ T(|w|/ we) ¢, from high frequencief.e., fast

TReAw) = Ter(w)ReAw) (4.5 modes, for which one hag(w) ~T. The equilibrium situ-

into Eq. (3.4), so that ation would correspond tay=0, in which caselg(w)=T

Teii(w) = T{ 1+
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for any w. It can also formally be retrieved by taking the quency rangew<<wgs which corresponds to the long-time

limit «— 0~ associated with the substitutidn—T/2. Actu-  limit wst>1, in which inertia can be neglected.
ally, Eq. (4.7) gives T as a function ofy(w) and 7gx(w),
and has been used in this way in the present work. However, 1. The long-time limit

the opposite is true, i.e., f(w) is given by Eq(4.9 and T
is given by Eq(4.11), then Eq.(4.7) is an equation irfqu(w)
which has Eq(4.12 as the unique solution. This is shown in 1

Appendix B. Owing to the power law for the friction, these mlw) = @) o] < w,. (4.16
two effective temperatures satisfy the same power law of the Y

form [1+(w/wp)*] with the samew. They differ only by a  In this case, the change in the exponent betwegew® ! and
renormalization of the parametey,, eventually complex. It —u> '™ is pictured by 15— 6-1, that is,6— 24, so that
is important, however, to note that this same generic poweT(elfg(w)[a,5]=7'eﬁ(w)[a,2—5]; hence

law for both Tef(w) and Zgr(w) only results from the very

In this limit,

particular choice of the power law in Egt.9) for the friction TW(w) = T{l + M(j)“] ] < w,,

¥(w). Should the friction be different, or at high frequency si(6— a)m/2]\ wy

(w not small with respect ta), then theT«(w) solution of (4.17)
Eq. (4.7) would have a different functional dependence. Nev- .

ertheless, this particular case is of interest, since(Ed.) Note thatws<w. In practice, we could even take the

has been used as a heuristic law postulated both in expetlf-mit_ (w.— to study the Brownian motion with a bath at
ments[11] to analyze the data, and in prior theoretical works€auilibrium [S]. The condition|w| <, is thus much more

[13,14] to model the out-of-equilibrium dynamics. stringent than the conditiojw| < w. in Eq. (4.12, and actu-
ally it corresponds to the long-time limit already investigated

S . in prior work[13] since|w| < w; meang> w3'. In particular,

C. Link with experiments we have showrEq. (5.8) in Ref. [13]] that at such long

On an experimental point of view, the motion of the times
Brownian particle can be investigated, aiming to determine

2kgT 1 inom/2
the effective temperature that characterizes the aging me- AxA(t) = —Bw[? 2w5“ .sm T o
dium[12]. This motion is linked to the medium through Eq. m I(6=-a+1)sin(6- a)m/2
(2.3, with the mobility u given in Eq.(2.2). Combined with wgt>1. (4.18

Eq. (4.6), these equationg.2) and(2.3) lead to , o . o
Experiments made in this long-time limit have recently con-

C,,(0) =kgTeii(w)2 Reu(w). (4.13  firmed this time power law of the mean square displacement

Tef is then not only an effective temperature associated wit A1), and the frequen.cy power law of the (nl1)0b|I|};y(w)
the bath, after Eqs(4.6) and (4.7), but also an effective L2l The authors of this work could deduG&(w) from
temperature for the Brownian particle, associated with thdn€ir data, using a procedure which can be made more
violations of the FDT expressed in the form of E¢&2) and ~ Simple. The procedure ifi2] is the following. (a) Laplace
(3.4), respectively. In principle, this temperature can be defransform AX?(t). (b) Derive the Laplace transformi(z)
duced from independent measurements ofuRe) and =H(w=iz) from the analytic expression gf(w) by analytic
C,,(w). On an experimental point of view, however, it is continuation.(c) Determine the Laplace transformii:(z)
easier to determine the mean square displacement of the pdrom the analytic continuation of Eq4.14 with w=iz,
ticle than its velocity correlation function. Therefore, we hadnamely, Z):L(z)kagz(z):zzﬁ(z). (d) Substitutez by —iw to

better consider the effective temperatﬂté,? associated with  gptain finally Tglfz(w). In the case whergu(w) and AxA(t)
the violation of the FDT expressed in the form of B8.2:  follow a power law, a simpler analysis could be the follow-
o W2 [ ing. (@) ldentify the power lawu(w) with Egs. (4.16) and
w(w)ksT H(w) = f (v(tv)edt=-— f AXA(t)e“dt. (4.9) to deducew; and 6. (b) Identify AxA(t) with Eq. (4.18
0 2 Jo to derive @ and wq. (€) Substitute in Eq(4.17) to deduce
(4.19 Télfg(a)). In addition, since the experiments aim at the deter-
mination of the properties of the medium in which the par-
ticle is immersed, the numerical application should rather be
made in Eqgs(4.11) and (4.12 to obtain the effective tem-
T.i(w)Re w(w) = Re[/L(w)kTgf)(w)]. (4.15 perature of the bath, rather than iq £4.17 _vvhi(;h giveg the.
effective temperature of the particle. This simple situation
Comparing Eqs(4.7) and(4.15, we find that the equations has been met in experiments reported in R&R|. The fact
differ only by the substitutiony(w) — u(w). This is, how- that only the second term in the brackets of E417) has
ever, an important difference, singg in contrast toy, is not  been detectefil2] is simply due to the fact that the first one
a power law ofw, unless the term iw is negligible with  is negligible in this long-time limit, since/wy>1 and «
respect toy(w) in the expressionu(w)=m y(w)-iw]™*  <0. Note, however, thaj(w) has been found in12] to
given by Eq.(2.2). This situation is met only in the fre- reduce to a power law only in a finite range of waiting times

7% is defined from Eqs(4.13 and (4.14 as is shown in
Appendix A. The result, already derived in Rgt4], is:
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where the phase gi(w) does not depend significantly @m  at shorter times does not reduce to a simple analytic form.
[12]. A significant departure from this behavior has been evi-The Laplace Fourier transform of E(.1) is
denced at long waiting times, in which cagéw) is no

longer a power law. 25(2) + 92)6(2) = F(@/m+ v, (4.20

2. The general case wherev,=v(t=0); hence

Most often, the measurements @fw) will reveal that it Vo
does not follow a power law, either because the inertial term W@p=—71-—. (4.21)
. . ! . . L z+ (2
is not negligible, i.e., we are not in the long-time limit, or
because the analytic form @f(w) does not reduce to Egs. After Eq. (4.9),
(2.2) and (4.9). The latter case will be met, for instance, if
the medium under study is a disordered slifi]. Still, one Wiw) = H2) = 0372, (4.22
can readily determine the effective temperature of the me-
dium from measurements of the mean square displacemeahd the inverse Laplace Fourier transform of E421) is
and mobility of the Brownian particle, using the following [21]
procedure(a) Use interpolation techniquesuch as spline
methods for instangeto determineAx?(t) at any time from W) =vt=0Eys(- (ws)?P), wt>1, (4.23
data at discrete timegb) Fast Fourier transform techniques
can be used to compute the partial Fourier transform in thavhere E,_s(X) is the Mittag-Leffler function of index 235.

second member of Eq4.14): The conditionwt>1 is due to the fact that E¢4.9), from
5 e which Eq.(4.23) issues, is valid only in the range< w.. On
ke 7 M) = - @ f AX3(t)edt (4.19  the other hand, the Laplace transform of the velocity corre-
2u(w) Jg lation function is, after Eq(4.14),

at anyw, provided thatAx?(t) diverges more smoothly than
t2 in the long-time limit. This last condition simply means
that the anomalous diffusion exponemtmust be smaller
than 2 to avoid divergence associated with kinematical ef
fects.(c) Use Eq.(4.19 to determinefffj?(w) from the data
u(w) and the result of the integratiofd) T can be deter-

mined from Eq.(4.19. This simple procedure allows one to the regression theorem, which states that the correlation
deriveTq4(w) from the measurements of the mobility and thef A ’ . A
. . . function and the mean value of a variable at equilibrium

mean square dlsplaceme_nt of the Brownian particle even ollow the same law13]. When the medium is aging, how-
the analytl_c form Of'“(“.’) is unknown. T_h's IS a prqof that ever, the velocity of the Brownian particle is also out of
the analysis of the motion of the.Brownlan particle is a poW'equilibrium, and this regression theorem is violated. To be
erful tool to determine the effective temperature of an aging, ore specific, Eq(4.21) and Eq.(4.23 still hold true, but
medium in which the particle is embedded, provided the sys~, ' ' o ) '
tem is in a stationary regime. Tiy in Eq. (4.24 depends orz so thatC,,(t) is no longer

We also note that the use of the procedure involving thProportional to(v(t)). Due to the breakdown of the regres-
Laplace transform suggested in some earlier w14 sion theorem, the velocity correlation function can no longer
would be even more intricate than in the long-time limit, by expressed as a Mittag-Leffler function. Only its
since the switch fromu(w) to f(2) cannot be done if the asymptotic behavior at long times is knowand reported in
analytic form of u(w) is unknown. One can always use a Ref.[13]), corresponding to the case where Egs17) and
fitting procedure to approximate the experimental curves byf4-18 can be used. At shorter times, H¢.19 is thus defi-
some polynomial or another more or less sophisticated funclitely of a most practical use to determine the effective tem-
tion, but this can only introduce a source of error in thePeratureZg, not only from an experimental point of view,
analysis of the data and an additional step in the analysi8Ut also from a theoretical point of view.
process. That is why, in our view, the Fourier transform L€t us recall that the last stef), use Eq/(4.19 to deter-
analysis of Eq(4.19 following Sher and Lax in a general- Min€ Tei(w), sometimes missing in prior experimental
ized theory of the mobility for stochastic transpdas] works, is of basic importance here, since the functl_onal de-
should be preferred to the Laplace transform analysis of theendences offg(w) and Ter(w) are not the same in the
same equation witkb=iz envisioned in12,14. general case.

On the other hand, the use of the Laplace transform is
suited to the study of the velocity correlation function when v RANDOM FORCE ELUCTUATION AND DISSIPATION
the bath is at equilibriunj21]. Let us show, however, that
this is no longer the case when the bath is out of equilibrium. Equation(4.6) for Crr(w), with y¥(w) given by Eq.(4.9)
The fact that the mobility reduces to a power law only in theand T¢(w) given by Eg. (4.1, yields the noise spectral
long-time limit means that the velocity correlation function density:

C,(2) = k(DT 3(2). (4.24

When the medium in which the particle is embedded is at
equilibrium,’]iﬁ:T. In this case, after Eq$4.21) and(4.22),
and after the analytic continuation of E(.2) for z=iw:
w(2)=[z+¥2)], we find C,,(t)=(kgT/mug){v(t)). This is
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CFF(w):mlqu{l+<M> :|2w5(m) S|n5_ﬂ-

[Os) Ws 2 '
(5.1)

|w| < wg.

Note the second term in the square brackets is the leading
term at small frequencies. Therefore, the chosen modeling of
the effective temperature ensures that the density of slow

PHYSICAL REVIEW E 71, 011109(2005

The Ohmic case&=1 is the limit case where the inverse
Laplace transform is not a function, but a distribution:

m(a+1)

(FIOF(t")) = 71kaT{2b‘(t —t) + 2 os
T 2

|t _ t/|—(a+l)
- |-

XT(a+1) (5.9

modes in the noise is larger than in a thermal bath at tem- ®o

peratureT [7,13,23. This is indeed expected, since the slow . _

modes are responsible for the aging. The random force coft IS important to note that Eq$5.6(5.8) are inverse Fou-
relation function{F(t)F(t')) can be obtained by means of the N€r transforms of expressions deduced from analytic con-

Fourier integral(5.1), which converges provided that the

conditio
a+6>0 (5.2
is satisfied. Note this is equivalent to the condition
Teii(w) > T (5.9

tinuation (w=iz) of functions established for reab in the
limit w<w.. Therefore, Eqs(5.6)—5.8) are valid, like Eq.
(4.23), only in the limit w.t>1. Due to the lack of any sin-
gularity in the correlation functions, we can extend H§sH)
and(5.7) to any time, which amounts to considering the limit
w.—. This is also usually done fof=1. Indeed, in the
limit w,— at §=1, y(t) e« &(t) so that the the limitw,— oo
amounts to reducing the Langevin equation to its nonre-

at anyw, as can be seen from Et.12. One can use either (arged formmdy/dt+7v(t)=F(t), with 7 the viscosity. The

Laplace transform or Fourier transform to determine thepirac term in Eq.(5.8)
noise correlation function. In continuity with the previous
section where we used the Laplace transform to analyze t
velocity correlation function, we follow here the same pro

cedure for the noise. The Laplace transfornCeg is readily
deduced from the analytic continuation of Eg.2) which,
for w=iz, can be written

Crr(2) = MkeZe (2 H(2). (5.4

After Eq. (4.9 and (4.22 and Eq.(4.12), Eq. (5.4) can be
written

Con(2) = mheT z‘H+ sin(ém/2) %t
FRE=IIBIO0 017 sin(6+ a)ml2] 0% Lt ||

(5.5

The inverse Laplace transform of this power-law series is

regular function if and only if:,:F(z)—>O whenz—x, i.e., if
6<1. In this case, the result is

(FIOF()) =migTy([t-t')

2 ) +6
+ EmigTw?sin — cosM
T 2 2
|t_tr|—(5+a)
X[(a+ o) ——F—F—, o6<1, (5.6
W 5Wq
with
2 5 S t[=°
(1) = —w%sinw— cosW—F(é)%, o<1. (5.7
T 2 2 w§

corresponds to the white Gaussian
noise of zero meakF(t)F(t’))=27kgT4(t) characteristic of

r}%e Brownian motion in the Ohmic case at equilibrium.

When 6> 1, however, the cutoff ab, is needed to avoid
divergence of the Fouridior Laplace transforms or the in-
tegrals, andF(t)F(t’)) has to be determined by taking the
inverse Fourier transform of E¢4.6), or the inverse Laplace
transform from Eq(5.4) with y(w) or %(z) deduced from Eq.
(4.9 including the functionf.. The expressions of(w) and
Yz) are still analytic for the particular case of a Lorentzian
cutoff function [20] so that the inverse transform of Egs.
(4.6) and(5.4) can be computed if desired. Note also that the
cutoff at high frequency can be skipped for the investigation
of the velocity or the displacement correlation function of the
particle in the whole range €6<2, while it cannot be
skipped for the noise friction correlation function when
&-1. This is related to the fact that the noise is much less
regular than the correlation functions of the variables of the
Brownian particle. The Dirac peak in Ed5.8) when
(w(t)v(t’)) reduces to a regular Mittag-Leffler function at
equilibrium whenés=1 is an illustration of this difference.
Below, we consider only the sub-Ohmic ca$e€ 1, since the
results in the superdiffusive case depend on the cutoff func-
tion f., i.e., on the particular medium under study. The case
6=1 will be discussed separately in the next section, since it
is a common case met in experiments, underlying the physics
of Brownian motors for instance.

Usually, for aging systems, the effective temperature is
associated with the violation of the FDT formulated in real
time. In the present case, this effective temperafliigt
-t’) should then be defined by E@l.1) which takes the

The first term in Eq(5.6) is the inverse Fourier transform of form
Eq. (3.4) so the second term is the correction to the second

FDT induced by the aging of the medium under study.

The condition(5.2) is a low-frequency criterion: it stems from

KFOF))

Xee(t=1') = Bly(t—t) ot -t') (5.9

the loww behavior of the integrand. As for the convergence atwhere 8'=1/(kgT(y). Note that Eq.(5.9) is written taking

infinity, it is effective, due to the existence of the cutoffaat

into account that we deal with a stationary regime where
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(F(HF(t')) and T, depend only ori—t” and not ont andt’ in the case of an aging medium must be different, and there
separately. After Eq(2.1), is no proof that Eq(2.1) is still relevant to the description of
the motion of the particle with such a different bath. In order
to justify the use of Eq(2.1), we have restricted ourselves to
the case where the medium, although not at equilibrium, is in
o ) ) o a quasistationary state for a given waiting titgeThe use of
At equilibrium whereTe,=T, the identification of the second he Langevin equation formalism to describe the Brownian
members of Eqs(5.9) and(5.10 gives, after integration, motion beyond stationarity is thus questionable. This is a
(FOF)) = mikgTy([t—t']) (5.11) b_asic reason why the present study is restricted to the sta-
tionary case. In addition the concept of a frequency-
plus an integration constant which, however, is zero sincelependent effective temperature is meaningful only in the
both members vanish in the linjit-t’'| — . Equation(5.11)  stationary case.

dy(t-t')

Xee(t=t') =mo(t-t) Py

(5.10

is just the inverse Fourier transform of E®.4). When the The two effective temperatures that are most relevant to
medium under study is out of equilibrium, Eg&.6) and  describe the evolution of the Brownian particle and the aging
(5.7) give, whent>t’, medium in the frequency space &@féq(w) and Teq(w), re-
, . spectively. These temperatures are those that have the same
w = kaT‘Mt , t) 1+ [lat5+1) expected analytic properties, allowing for their analytic con-
at at r'(o+1) tinuation in the complex plane. They equalize only at equi-

librium, which can be reached only if the medium is itself at

cosm(d+a)l2(t—t")™“ S - : . 1
. (5.12 equilibrium. If the medium is aging7 4 # Ze at any fre-

cosmdl2 g quency. There is, however, another temperafly;e which
From this equation, we can deduce the effective temperatur@akes the link between the Brownian motion and the dy-
defined by Eq(5.9): namical properties of the aging medium. Measurements of
the mobility and mean square displacement of the Brownian

I'(a+d+1)cosm(s+a)/2(t-t)" particle give direct access B4(w). Then T can be de-
re+1 cosmdl2 oy | duced from Eq.4.15. The determination off; from the
knowledge ofT is then possibléthrough Eq.(4.7)] if and
o<1 (5.13 only if the friction y(w) is known. This is indeed expected
Remember the model is meaningful onlyaf-2> 8, since  since, in the Langevin equation approach, the interaction be-
this condition is equivalent to< 2 wherev is the anomalous tween the Brownian particle and the surrounding medium is
diffusion[13], and equivalent to the condition needed for theentirely contained in the friction.

Teg(t—t') = T{l +

velocity correlation function(v(t)v(t’)) to exist[13]. This In a simple power-law model, the aging properties of the
condition is actually more stringent than the conditiens  Medium can be encoded in a frequency-dependent effective
> -2 for which, after Eq(5.13 temperature entirely defined by the exponerand the char-
acteristic frequencyy. Of course, these two variables may
Teg(t—t)>T. (5.149  depend on the waiting timg,, i.e., a=al(t,), wy=wy(ty).

However, botha and wy are considered as constants at the
scale of the observation time which must then be kept small
S compared with,. This condition can be writtent, > 1,
and states that the two time scales, respectively characteriz-
ing the times pertinent for the measuring process and the
waiting time or the age of the system, must be kept well
separated. The long-time limit in the present work should
The present work analyzes the possibility to use thehen not be regarded as the linfit-t') —<°, but the limit
Brownian motion of a particle as a probe to characterize thét—t')> w3, wg", while keeping(t—t') <t,. The investiga-
aging of the complex medium in which it is immersed. Thetion of the Brownian motion in this limit is sufficient to
Brownian motion is described by the Langevin equation indetermine the two parametess w, that characterize the ag-
Eg. (2.1, which has been taken in its generalized form in-ing of the medium under studwt givent,,) [13], in case the
cluding a memory friction. The common route to derive thispower-law model used in the model applies. Beyond this
equation is to model the thermal environment by an infinitelimit, the velocity correlation functiorC,, for the Brownian
and continuous set of harmonic oscillators linearly coupledparticle cannot be put in a closed form, due to the violation
to the particle. It is commonly accepted that, for a heat batlof the regression theorem which prevents any simple de-
atthermal equilibrium all the statistic properties of the noise scription ofC,, in terms of Mittag-Leffler functions. On the
are uniquely fixed, i.e., independent of any further micro-other hand, it is possible to find a closed form for the corre-
scopic details of the thermal bath. Then, it has been inferrethtion function of the bath coordinatéhe noisg, at least in
that any dissipative dynamics of the for(8.1) in contact the regimed<1 where this function is regular even without
with an equilibrium heat bath can be represented by such any cutoff at high frequency for the mode density of the bath.
harmonic oscillator bath23]. Such a harmonic oscillator In this case, the effective temperatuFg(t—t’) associated
bath, however, does not age. Therefore, the actual heat ba#tith the violation of the FDT for the aging medium in its

Therefore the inequality5.14) is always satisfied when the
model applies. This is known to be the condition Tc; to
be meaningful in terms of the effective temperature for a
aging variabld1,8,9.

VI. CONCLUDING REMARKS AND DISCUSSION
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time formulation satisfies the stability criteriofls>T at  study (Drude, Debye, Fermi frequency, etcFor instance,
any time, so that our description of the aging of the mediunthe Langevin equation with the quite different Coulomb fric-
is fully self-consistent. tion has to be chosen if the random force in the medium

The regular behavior of the noise correlation function isoriginates from collision of molecules, or in granular mate-
crucial to determine the effective temperaturg; of the  rials [28]. We cannot either expect the power law g to
bath. In particular, for the common ca8e 1, the white noise be always valid. We can take advantage of the analogy for-
in Eq. (5.8 corresponding to the Einstein term has to bemulated in this work between effective temperature and ac
smoothed. The introduction of a Lorentzian cutoff functiondielectric susceptibility to note that relaxation motion of in-
fc(w)=w§/(w§+w2) in the definition of the friction in Eg. ternal modes in ferroelectrics gives a logarithmic contribu-
(4.8 gives[see, for instance, Eq4.8) in Ref.[2]] tion

Yt—1') = yyoe el (6.2) x = [In(Lwr)]* - i(mé2)sgnw)[In(Lwr) 17,

the real part of which eventually dominates the real part of
the susceptibility 18,26,27. This logarithmic law might also
apply to the effective temperaturEq«(w), instead of Egs.
(4.3 and (4.4), depending on the frequency range explored
and the physics at the origin of the aging of the system in-
vestigated.

In this expressione_* acts as a measure of the memory time
of the friction. Note that ify(t) is given by Eq.(6.1), then
Tex(w) is not given by Eq(4.12 for o> w,. However, since
wy<wg, Te(w)=T at high frequencys = w,, so thatZ (o)

is not sensitive to the cutoff. A good approximation is then to
keep Eq.(4.12 at any frequency, and consider the effect of
the cutoff on the friction only. Note thaf(t) — 2y, 8(t) when ACKNOWLEDGMENTS
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determination_ ofTe just _at i@ has been (eported 'above for APPENDIX A

8< 1. The noise correlation in E@5.11) with (t) given by

Eq.(6.1) has then the same time dependence as in the case of In this appendix, we derive trivial analytic properties
two stochastic processes, which might be considered as reathich we use to link the effective temperatures of the
istic versions of almost uncorrelated noise, namely, thérownian particle and the out-of-equilibrium medium with
Ornstein-Uhlenbeck process and the random telegraph signéie velocity and random force correlation functions, respec-
[24]. tively. Let k(t) be a function of time and(t)=6(t)k(t) the

_ The out-of-equilibrium dynamics of the bath generate &, g4 fynction. The Fourier transforktw) of k(t) ,

time correlation of the noise force which satisfies a power

law in time, after Eq(5.8). This means that the slow relax- ~ * ot

ation of the out-of-equilibrium medium results in a correla- k() :f e“k(t)dt, (A1)

tion of the noise extending to a long-time scale. The out-of- 0

equilibrium situation depicted in this work is thus very is the convolution product of the Fourier transformskét
different from the introduction of a time-dependent temperagnd 6(t), which can be written in the form of the well-known
ture in Brownian thermal ratche{®25]. While (F(t)F(t")) Kramers-Kronig relation:

«TH(t-t") at equilibrium, the nonequilibrium motion of the , )

thermal ratchet is generated by a time-dependent temperature ];(w) - k@) | . f do’ k(o) (A2)

— i .
T(t) in the noise correlation function, so th&E(t)F(t’)) 2 2rw—w'
=TOXt-t). In a few cases, the Dirac dlstr|but|pn IS e addition, ifk(t) is even, its Fourier transforiiw) is real
placed by a peaked function such as E§1), but it only so that

shifts the noise properties from uncorrelatedite noise to
almost _uncorrelatgd noise, in contrast with the long-range k(w) = 2 Rek(w). (A3)
correlation found in the present work. Clearly, the out-of-
equilibrium motion of the particle generated by the substitu-As the velocity correlation function and the random force
tion T&(t, ') — T(t)&(t,t') in the physics of Brownian motors correlation function are even functions of time, E¢al)
corresponds to a quite different situation where the Browniar@nd(A3) apply. At equilibrium, they are Eq$3.1) and(3.2),
particle either thermalizes instantaneously with differentrespectively, for the velocity, and Eqé3.4) and (3.3), re-
baths at different temperatures with which it is in contact atspectively, for the random force. Out of equilibrium, Eq.
different times, or “follows” an adiabatic transformation of (A1) can be identified with Eq4.2) in which case Eq(A3)
the bath which remains at equilibrium at any time. takes the form

Finally, we cannot expect that the power law envisioned -
for the friction in this work holds true at any frequency, and Crr(w) = 2mkg R y(0) T ()],
for any aging medium, beyond the fact that we have alreadwhich is a combination of Eqg4.6) and (4.7). For the ve-
outlined the conditiorw < w. With w, the characteristic cut- locity, if Eq. (Al) is identified with Eq.(4.14), then Eq.(A3)
off frequency of the density spectrum of the medium undettakes the form
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Coo(@) =2kg R 7t Im T
vv((‘)) B dl’“(w) eff(w)]v 2)(60) - _ sgr[w]tanﬂ. (53)
which is a combination of Eqg4.13 and(4.15. ReT “(w) 2
From Egs.(B1) and(B3), it is then straightforward to find
APPENDIX B in(sm2) [ =iw\®
7&@»:ﬂﬁ+fjﬂgz_L_(ge)}, B4)
Equation(4.7) determinesT(w) from the knowledge of sin{(6+ a)m/2]\ wg

Tesi(w). Let us show that the opposite holds true, i.e., if wewhich is Eq.(4.12. The functionZu4(w) is analytic in the

assume thaley is given by Eq.(4.11), Eq. (4.12 follows.  \hole complex plane, except for a cut on the real negative
According to Eqs(4.7) and(4.11), T can be written as axis. Note also that, for rea,

Teplw) =T+ T?(0), . ol
)(w) = 1l
with Re 7 (w) T{1+(w6) ] (B5)
) ith
T(w/wg)®=ReT?(w) - Im Aw) ImT?(w). (B1) e
Re y(w) o [sin(éw/)cos(aw/Z)]‘”“ (88)
From Eq.(4.9), one has @o= %o si(8+ a)m/2]

Im y(w) T T fﬁ) can then be viewed as an analytical continuation in the
Ref(w) sgr{w]cot?, (B2)  complex frequency plane of an effective temperature which
takes the form of Eq4.11), with renormalizeds, parameter
where sgfw] denotes the sign ob. After Eq. (B1), T?  according to Eq.(B6). The functional dependence on fre-
=% and it has the same analytic propertiesyés) = w’* quency is then the same in both cases, and the aging system
after Eq.(4.2). Therefore, we have just to make the substitu-is then consistently described By and (or) 7o for the
tion 6-1—a, i.e., 6— a+1 into Eq.(B2) to find particular choice of a power law for the friction.
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